Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus.

نویسندگان

  • M Sur
  • S M Sherman
چکیده

1. We used standard, single-cell recording techniques to study the response properties of 34 W-cells in the C-laminae of the cat's lateral geniculate nucleus. By W-cell, we mean a poorly responsive geniculate neuron that receives slowly conducting retinal afferents; these are quite distinct from geniculate X- and Y-cells. Our measurements included response latency to optic chiasm stimulation, plots of the receptive-field center, time course of response, and responses to counterphased, sine-wave gratings. This last measurement also involved the determination of contrast sensitivity, which is defined as the inverse of the contrast needed to evoke a threshold response at a particular spatial and temporal frequency of the grating. Many of these responses were compared to those of geniculate X- and Y-cells recorded in the A-laminae. 2. Each of the W-cells responded with a latency of at least 2.0 ms to optic chiasm stimulation, and most (76%) exhibited a latency of at least 2.5 ms. However, only 26 of these W-cells responded to visual stimuli, and these responses were weak or "sluggish," as has been reported previously. Receptive fields of these W-cells tended to be large, compared to those of X- and Y-cells, and included 11 on-center, 13 off-center, and 2 on-off center fields. 3. W-cells exhibited either linear (12 cells) or nonlinear (14 cells) spatial and temporal summation, as determined from their responses to counterphased, sine-wave gratings. Linearity of spatial summation was determined by measuring contrast sensitivity as a function of the grating's spatial phase. The linear W-cells' responses were sinusoidally phase dependent, and the nonlinear W-cells' responses were independent of spatial phase. Linearity of temporal summation was determined by the presence or absence of harmonic distortion in the response relative to the grating's counterphase rate. Linear W-cells responded chiefly at the grating's fundamental temporal frequency, whereas much of the nonlinear W-cells' responses occurred at the second harmonic of the grating's temporal frequency. Thus, nonlinear W-cells exhibited many of the characteristics previously described for Y-cells. 4. Spatial and temporal contrast-sensitivity functions were determined for seven linear and eight nonlinear W-cells. Overall sensitivity values of the linear and nonlinear W-cells were comparable, but these groups differed in terms of the nature of the response component (linear or nonlinear) that was more sensitive. 5. The linear W-cells in our sample included both tonic (comparable to the "sluggish-transient" type of retinal ganglion cells) types, while all nonlinear W-cells were phasic. Otherwise, no difference between linear and nonlinear W-cells was seen for latency to optic chiasm stimulation, receptive-field size, overall contrast sensitivity, responsiveness to visual stimuli, overall spatial resolution, or temporal resolution. 6...

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology of physiologically identified W-cells in the C laminae of the cat's lateral geniculate nucleus.

The projections from the retina through the lateral geniculate nucleus to the visual cortex in the cat are comprised of three parallel, independent pathways. These three pathways involve, respectively, W-, X-, and Y-cells in the retina and the lateral geniculate nucleus. In this study, we investigated the morphology of those neurons in the C laminae of the lateral geniculate nucleus that receiv...

متن کامل

Morphology and physiology of single neurons in the medial interlaminar nucleus of the cat's lateral geniculate nucleus.

Physiological studies have shown that the cat's retinogeniculocortical system is comprised of at least three parallel and independent pathways, the W-, X-, and Y-cell pathways. The morphological correlates of the constituent W-, X-, and Y-cells have been determined both in the retina and in the A and C laminae of the lateral geniculate nucleus. The aim of this study was to extend these structur...

متن کامل

Ultrastructure of synapses from the pretectum in the A-laminae of the cat's lateral geniculate nucleus.

We have recently shown in cats that many neurons projecting to the lateral geniculate nucleus from the pretectum use gamma-amino butyric acid (GABA) as their neurotransmitter. We sought to determine the morphology of synaptic terminals and synapses formed by these pretectal axons and the extent to which they resemble other GABAergic terminals found in the geniculate neuropil (i.e., from genicul...

متن کامل

Studies of the cat's medial interlaminar nucleus: a subdivision of the dorsal lateral geniculate nucleus.

The medial interlaminar nucleus (MINI of the cat lies medial to the laminated region of the dorsal lateral geniculate (1amLGN). This latter region includes the A and C laminae. As does lamLGN, MIN receives direct retinal input and projects to various visual cortical areas. We examined the MIN of 15 normal adult cats with electrophysiological and anatomical techniques. Autoradiographs processed ...

متن کامل

Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation.

We measured response properties of X- and Y-cells from laminae A and A1 of the dorsal lateral geniculate nucleus of monocularly lid-sutured cats at 8, 12, 16, 24, and 52-60 wk of age. Visual stimuli consisted of small spots of light and vertically oriented sine-wave gratings counterphased at a rate of 2 cycles/s. In cats as young as 8 wk of age, nondeprived and deprived neurons could be clearly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 47 5  شماره 

صفحات  -

تاریخ انتشار 1982